Immuno-Prevention of cancers not associated with infectious agents

Margaret Wojtowicz
NCI-Division of Cancer Prevention
November 16, 2017
Overview

• What is “Cancer Immunoprevention”?

• Why is it an *attractive strategy* for cancer prevention?

• Attributes of *targets/antigens (Ags) & strategies* used in cancer immunoprevention.

• What Ags can we target for prevention of tumors NOT associated with infectious agents?

• Vaccines currently being investigated in studies conducted at DCP:
 * WOKVAC
 * VADIS
 * MUC-1
 * PROSTVAC

 *breast cancer prevention
 *colon cancer & lung cancer prevention
 *prostate cancer prevention
Cancer Immunoprevention

Modulation of the host immune system to prevent the initiation of carcinogenesis and progression to cancer
Immune Modulation as an Attractive Strategy for Cancer Prevention

- Specificity & adaptability of immune responses
- Memory immunity (potentially life-long)
- Safety profile (vaccines)
- Ease of administration and potentially improved compliance
Immunity During Carcinogenesis
Attributes of targets/antigens & strategies used in cancer immunoprevention

Targets:

1. Relevant for cancer development

2. Expressed on tumor tissue *(or predominantly)* and NOT *(or to much lesser degree)* on normal tissue –
 - Tumor Specific Antigens – TSA
 - Tumor Associated Antigens - TAA

3. Capable to induce “specific” immune response, especially T cell responses
 (break immune tolerance to “self”) – be *immunogenic* – but NOT inducing autoimmunity

4. Overall safety of targeting given antigen

Strategies:

1. **SAFETY** --- > Vaccines

 * Autoimmunity? --> continued question
What Targets/Antigens Can We Use for Cancer Immunoprevention?

<table>
<thead>
<tr>
<th>Cancers associated with infectious agents</th>
<th>Cancers not associated with infections agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign Antigens</td>
<td>Self Antigens</td>
</tr>
<tr>
<td>HBV, HBsAg</td>
<td>HER2</td>
</tr>
<tr>
<td>HPV, E6, E7</td>
<td>PSA</td>
</tr>
<tr>
<td>HCV, NS</td>
<td>WT1</td>
</tr>
<tr>
<td></td>
<td>CEA</td>
</tr>
<tr>
<td></td>
<td>MUC1</td>
</tr>
<tr>
<td></td>
<td>MART-1</td>
</tr>
<tr>
<td>EBV</td>
<td>MAGE A2</td>
</tr>
<tr>
<td>HTLV-1</td>
<td>NY-ESO-1</td>
</tr>
<tr>
<td>HHV8</td>
<td>BCR-ABL</td>
</tr>
<tr>
<td></td>
<td>AFP</td>
</tr>
</tbody>
</table>

Most promising Tumor Associated Antigens (TAA)

→ “self” antigens or normal cellular proteins that become immunogenic during the malignant process

Mechanisms by which normal cell protein becomes aberrant in cancer “abnormal self”

- *acquisition of stable mutations i.e. MAGE1*
- *overexpression of ca. associated proteins i.e. Her2/neu*
- *post-translational modification such as abnormal glycosylation i.e. MUC-1*
HER-2

Her2 receptors send signals telling cells to grow & divide

NORMAL CELL

- HER2 receptor
- HER2 gene (ERBB2)
- nucleus

HER2+ CELL

- HER2 receptor
- HER2 gene (ERBB2)
- nucleus

Too many Her2 receptors send more signals, causing cells to grow too quickly

Breast Cancer Development

- Normal duct
- Ductal hyperplasia
- Atypical hyperplasia
- DCIS
- Invasive ductal carcinoma

(Images and diagrams depict the stages and development of breast cancer, highlighting the role of HER2 receptors.)
MUC-1 - Mucin 1

Colon Cancer Development

& Overexpressed on abnormal tissues
PSA - Prostate Specific Antigen

- A protein
- Almost exclusively produced by the epithelial cells of the prostate in normal and in pathologic conditions such as:
 - infection
 - urinary retention
 - enlargement of the prostate (BPH)
 - **prostate cancer** (PSA overexpressed on tumor)
Types of Cancer Vaccines

- Inexpensive production
- Easier & faster manufacturing
- “Off the shelf” products
- Long-shelf life

Important!
aside from generating target-specific immune responses...

“Epitope Spreading”
Broadening of generated immune responses against epitopes not included in the vaccine.
(intra-Ag; inter-Ag spreading)
Approaches to reducing cancer morbidity and mortality
Vaccines - "active immunity"
Adaptive Immune System

KEY COMPONENTS OF VACCINES

the specific component:

the Antigen

Peptide-long vs short

Epitope (antigenic determinant) = the part of an antigen that is recognized by the immune system (antibodies, B cells, T cells)

Viral-like Protein/VLP
Pentamer of a protein

• Viral vector

Cell-based vaccines

the nonspecific component:

the Adjuvant

Adjuvants = agent/strategy added to vaccine formulations that enhance the immunogenicity of antigens in vivo
Breast Cancer Prevention

VADIS trial

• Target: Her2/neu

• Agent/Vaccine construct: **short (9aa; 369-377) peptide + GM-CSF** (adjuvant) (E75; NeuVax; Nelipepimut-S)
Adaptive Immunity: Cellular Immunity

- **CD4/helper** versus **CD8/cytotoxic T cells**

- Infection
- Cancer

APC/

- antigen presenting cell

MHC = Major Histocompatibility Antigen

TCR = T cell receptor

HLA = Human Leukocyte Antigen

Processed Bad Antigen

T cell

CD8 T cell

- CD8 / cytotoxic T cell / CTLs (cytotoxic T lymphocytes)
- MHC class I - restricted

CD4 T cell

- CD4 / Helper T cell
- MHC class II - restricted

Typically 8-10aa

(short peptide)
Breast Cancer Prevention

VADIS trial

- **Target:** Her2/neu
- **Vaccine construct:** short (9aa)peptide + GM-CSF (E75; NeuVax; Nelipepimut-S)
- **Adjuvant:** GM-CSF
- **Special requirement:** HLA restriction to HLA-A2 participants only
- **Route of administration:** Intradermal injection
- **Study:** Ph II randomized (w/GM-CSF alone), pre-surgical (tissue in place) study in pts with DCIS evaluating safety; systemic/local immune responses; epitope spreading; histologic changes at resection

- **Anticipated toxicity:** well studied in BrCa pts; safe; (+) epitope spreading; in Ph II ↓ relapse in early dz.; though Ph III (-)
 - *from target:* cardiac (potential), ...
 - *from the vaccine construct:* predominantly GM-CSF related
 - local: injection site reactions: induration, erythema, warmth, pain, swelling, pruritus
 - systemic reactions: flu-like symptoms, bone pains, fatigue

*** No e/o autoimmunity
Breast Cancer Prevention

WOKVAC trial

- **Targets:** Her2, IGF-1R, IGFBP-2 (vaccine construct targeting *several* antigens ---> *polyvalent* vaccine)
IGF-1R & IGFBP-2

Membrane-bound protein (e.g., Integrin)

Various effects depending on IGFBP

IGF-1R & IGFBP-2

Unphosphorylated IGF-1R

Phosphorylated IGF-1R

Various effects depending on IGFBP

Nucleus

Proliferation

Glucose Metabolism

Protein Synthesis

Her-2

Normal Cell

HER2+ Cell

HER2 gene (ERBB2)

Overexpression - multiple HER2 genes

Breast Cancer Development

Normal duct

Ductal hyperplasia

Atypical hyperplasia

DCIS

Invasive ductal carcinoma

Basement membrane

Myoepithelium

Ductal epithelium
Breast Cancer Prevention

WOKVAC trial

- **Targets:** Her2, IGFBP-2, IGF-1R
- **Agent/Vaccine construct:** DNA plasmid
- **Route of administration:** *Intradermal inj.*
- **“Adjuvant”:** bacterial plasmid; selected epitopes; intradermal inj.
- **Study w/Her2+IGFBP-2:** good tox; mainly inj site rx & flu-like sx.
- **Study:** Ph I dose finding study, assessing safety & immunogenicity of WOKVAC in non-met. LN (+), Her2 (-) BrCa pts in remission after curative standard Rx.

- **Anticipated toxicity:**
 * from the **target:** cardiac, glucose control?, ...
 * from the **vaccine construct:** local (plasmid Ø get into circulation; Ag persistent @ site/depot, systemic: flu-like symptoms, ...
 surveillance: labs for autoimmunity, off target effect(s), ...

WOKVAC designed to:
include sequences of immunizing Ags to induce predominantly TH1/Type I immune response (immune-stimulatory) Th1 cells & cytokines esp. IFN-gamma.

Electroporation

What is a plasmid?
- A circular piece of autonomously replicating DNA
- Originally evolved by bacteria

WOKVAC plasmid produces 1 single polypeptide of 70kDa expressing 3 extended epitope segments.
T\(_H\)CD4 cell subtypes

T helper/T\(_H\) cells are functionally of 2 types:

- **TH1/Type 1 versus TH2/Type 2**

Immune Response

Clinical Immunology Spectrum 1994

We want Type 1/TH1 response to fight cancer
Breast Cancer Prevention

WOKVAC trial

- Targets: Her2, IGFBP-2, IGF-1R
- Agent/Vaccine construct: DNA plasmid
- Route of administration: Intradermal inj.
- “Adjuvant”: bacterial plasmid; selected epitopes; intradermal inj.
- Study w/Her2+IGFBP-2: good tox; mainly inj site rx & flu-like sx.
- Study: Ph I dose finding study, assessing safety & immunogenicity of WOKVAC in non-met. LN (+), Her2 (-) BrCa pts in remission after curative standard Rx.

- Anticipated toxicity:
 * from the target: cardiac, glucose control?, ...
 * from the vaccine construct: local (plasmid Ø get into circulation; Ag persistent @ site/depot, systemic: flu-like symptoms, ...
 surveillance: labs for autoimmunity, off target effect(s), ...

WOKVAC designed to:
* include sequences of immunizing Ags to induce predominantly TH1/type I immune response (immune-stimulatory) Th1 cells & cytokines esp. IFN-gamma.

WOKVAC plasmid produces 1 single polypeptide of 70kDa expressing 3 extended epitope segments.
Colon Cancer Prevention

- **Target:** MUC-1
- **Agent/Vaccine:** long (100aa) peptide + PolyICLC (Hiltonol) as adjuvant
- **Adjuvant:** PolyICLC (Hiltonol) => agonist of TLR 3
- **Route of administration:** *Subcutaneous* injection
- **Study:** Ph II randomized, placebo(*normal saline*) controlled study in pts with recently(≤1y) dgn advanced (≥1cm) colonic adenoma(s). Efficacy study. Accrued. F/u for 3y w/recording of polyp/adenoma recurrence.

Anticipated toxicity:

* from the *target:* ...

* from the *vaccine construct:* predominantly due to *adjuvant*
 - local: injection site reactions (erythema, soreness, warmth, swelling)
 - systemic: flu-like symptoms, muscle aches;

 1 pt with NASH developed transient elevation of LFT hence, NASH excluded

*No evidence of autoimmunity

Pre-vaccination MDSC – associated with inability to respond to vaccine/generate anti-MUC1 immunity
TLRs
*Immediate
*Non-specific immune responses

-Toll-like receptors (TLRs) = proteins of the innate immune system (on macrophages, dendritic cells)
-TLRs respond to danger signals (microbes/pathogen-associated molecular patterns (PAMPs))

-Innate Immune Response (Immune cells, Cytokines)
Colon Cancer Prevention

- **Target**: MUC-1
- **Agent/Vaccine**: long (100aa) peptide + PolyICLC (Hiltonol) as adjuvant
- **Adjuvant**: PolyICLC (Hiltonol) => agonist of TLR 3
- **Route of administration**: Subcutaneous injection
- **Study**: Ph II randomized, placebo(normal saline) controlled study in pts with recently(≤1y) dgn advanced (≥1cm) colonic adenoma(s). Efficacy study. Accrued. F/u for 3y w/recording of polyp/adenoma recurrence.

Anticipated toxicity:
- * from the target: ...
- * from the vaccine construct: predominantly due to adjuvant
 - local: injection site reactions (erythema, soreness, warmth, swelling)
 - systemic: flu-like symptoms, muscle aches;
 1 pt with NASH developed transient elevation of LFT hence, NASH excluded

*No evidence of autoimmunity

*Pre-vaccination MDSC – associated with inability to respond to vaccine/generate anti-MUC1 immunity
Lung Cancer Prevention

- **Target:** MUC-1
- **Agent/Vaccine:** long (100aa) peptide + PolyICLC (Hiltonol) as adjuvant
- **Adjuvant:** PolyICLC (Hiltonol) => agonist of TLR 3
- **Route of administration:** *Subcutaneous injection*
- **Study:** Ph I trial in current & former smokers at high risk for lung cancer (55-80yo; ≥30py)
 Evaluating safety & immunogenicity in these pts w/local & systemic inflammation from smoking (? impact on respiratory status; ability to immunize successfully,...).

- **Anticipated toxicity:**
 * from the target: ...
 * from the vaccine construct: mainly due to adjuvant,...
 - local: injection site reactions: (erythema, soreness, warmth, swelling)
 - systemic: flu-like symptoms, muscle aches,... ? ↓/↑ local/lung inflammation,
 ? impact on systemic inflammation (hsCRP, IL-6), ...
Prostate Cancer (*progression*) Prevention

- **Target:** PSA
- **Agent/Vaccine:** PROSTVAC®
 - rV-PSA-TRICOM (prime) -> rF-PSA-TRICOM (boosts)

 * Virus – vehicle/vector for delivery of PSA & B7+ ICAM-1 + LFA-3 = TRICOM
 * Priming -> vaccinia virus based construct; *Boosting-* fowlpox virus based construct

Adaptive Immunity:
- **Cellular Immunity (T cells):**
 - **Antigen Presentation & T Cell Activation**
 - Generalized part of T cell activation

 - Infection (virus) Cancer
 - Bad Antigen
 - Processed Bad Antigen (epitope)
 - APC/antigen presenting cell
 - T cell
 - IFN-γ
 - IL-17

 - MHC = Major Histocompatibility Antigen
 - TCR = T cell receptor
 - HLA = Human Leukocyte Antigen

Prostate:
- Absorption into the bloodstream
- Prostate Specific Antigen
- Prostatic ducts
- Free PSA
- ACT bound PSA
- γMG bound PSA
Prostate Cancer (progression) Prevention

• **Target:** PSA

• **Agent/Vaccine:** PROSTVAC®
 - rV-PSA-TRICOM (prime) -> rF-PSA-TRICOM (boosts)
 * Virus – vehicle/vector for delivery of PSA & B7+ ICAM-1 + LFA-3 = TRICOM
 * **Priming** -> vaccinia virus based construct; **Boosting** -> fowlpox virus based construct

• **“Adjuvant”:** viral vector

• **Route of administration:** *Subcutaneous injection*

• **Study:** Ph II randomized, placebo (*empty viral vector*) controlled trial in pt with localized PrCa on active surveillance

 Evaluating vaccine impact on change in CD8(+) & CD4(+) cells in the tumor and adjacent stroma.

• **Anticipated toxicity:**
 * from the **target:** ...
 * from the **vaccine construct** – mainly due to viral vector

 - **local:** injection site reactions: Vaccinia->potential for vaccinia dissemination->specific care w/contacts & wound care (needs to crust off); individuals w/eczema/skin breaks excluded
 - induration, erythema, warmth, soreness, swelling
 - **systemic:** flu-like symptoms, muscle aches, fatigue
Summary:

• Multiple vaccination strategies
 * targeting single or multiple antigens
 * with variable side effect profiles
 * at different level of development
 * aiming at stimulating different arms of immunity

• No understanding of immune regulation of premalignancy

• No good understanding of long-term safety as most vaccine constructs tested in cancer patients

• Difficult to develop standardized toxicity criteria (CTCAE for cancer vaccines) at this stage of field (cancer immunoprevention) development.
Thank you